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A wavelet-based stochastic formulation has been presented in this paper for
the seismic analysis of a rigid block resting on a friction base. The ground
motion has been modelled as a non-stationary process (both in amplitude and
frequency) by using wavelets. The proposed formulation is based on replacing
the non-linear system by an equivalent linear system with time-dependent
properties. The expressions of the instantaneous damping, root mean square
(r.m.s.) velocity response, and the power spectral density function (PSDF) of
the velocity response have been obtained in terms of the input wavelet
coe�cients. For validation of the formulation, simulation based on twenty
synthetically generated time-histories corresponding to an example ground
motion process has been carried out. The e�ectiveness of the base-isolation
system and the e�ect of the frequency non-stationarity on the non-linear
response have also been studied in detail. It has been clearly shown how the
frequency non-stationarity in the ground motion changes the non-linear
response.
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1. INTRODUCTION

Isolating structures from base excitations has emerged as a popular passive
device to protect the structural systems from earthquake excitations. Among the
available base-isolation techniques, the frictional base-isolation technique has
been found to be reasonably effective and economical. The frictional base-
isolation system operates on the basis of the slipping of the foundation during
the moderate to high ground acceleration phases, and thus, limits the inertia
forces exerted on the superstructure. The behaviour of such a system has been
studied in a preliminary form by investigating the response of a rigid block
which is subjected to base acceleration with dry or Coulomb's friction at the
interface. Crandall et al. [1] obtained the root-mean-square (r.m.s.) value of the
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slip displacement by modelling the ground excitation as a white noise. Ahmadi
[2] assumed the excitation to be a unit step modulated white-noise, and observed
marginal differences between the stationary and non-stationary responses. The
standard deviation of the slip displacement was obtained by applying equivalent
linearization technique to solve the Fokker±Planck equation. Noguchi [3]
estimated the slip displacement and acceleration transmission ratio in terms of
the r.m.s. values for a linear mass-dashpot system subjected to ®ltered white-
noise excitation.
The above mentioned studies have modelled the excitation process either as

white-noise or as a ®ltered white-noise. The earthquake ground motion processes
are however characterized by signi®cant amplitude and frequency non-
stationarity. By affecting the response considerably, the non-stationarity in an
excitation process may actually in¯uence the estimated parameters of the
equivalent linear system. Even though the researchers in the past have
emphasized more on the role of amplitude non-stationarity, the non-linear
response of a dynamical system is also known to be sensitive to the frequency
non-stationarity (e.g., see Yeh and Wen [4]). Recently, wavelet analysis has been
developed as a very powerful tool to tackle frequency non-stationarities in
earthquake ground motions. Wavelet transform provides information about the
local frequency content in a process with both amplitude and frequency non-
stationarities (Basu and Gupta [5]). By using this technique, Basu and Gupta
[6, 7] have obtained the stochastic seismic responses of single-degree-of-freedom
(SDOF) and classically damped multi-degree-of-freedom (MDOF) systems.
Early contributions to the subject of wavelet analysis and its application to
vibration analysis include Meyer [8], Daubechies [9], Chui [10], Stromberg [11],
Grossman and Morlet [12], Battle [13], LemarieÂ [14], Mallat [15], and Newland
[16±18].
This paper presents a formulation for the non-linear stochastic response of a

friction base-isolated rigid block. The block is assumed to be subjected to a base
acceleration process which is characterized by its wavelet co-ef®cients. The
proposed formulation is validated through time history simulations. Further, the
effectiveness of the base-isolation system and the effect of frequency non-
stationarity on the non-linear response are investigated.

2. FORMULATION FOR STOCHASTIC RESPONSE

2.1. EQUATION OF MOTION

We consider a rigid block of mass, m, resting on a surface with friction
coef®cient, m, and subjected to a non-stationary, zero-mean, locally Gaussian
base acceleration process, z(t). When the block slips, the relative displacement
process, x(t), can be described by

�x� mg sgn� _x� � ÿz�t�, �1�
where g is the acceleration due to gravity; and sgn( _x)=1, for _xe0, and ÿ1
otherwise. During the sticking phase, the relative motion of the block with
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respect to the foundation is absent. Then, the relative acceleration is zero and
the absolute acceleration is equal to the ground acceleration.
Let the input process, z(t), be characterized by its wavelet coef®cients,

E�W2
c z�aj , bi�� (see the Appendix for a brief discussion on wavelet transforms

and time±frequency analysis). Using these wavelet coef®cients, the instantaneous
mean square values of the process can be written as (see Basu and Gupta [6, 7])

E�z2�t�� jt�bi � K
X
j

E�W2
c z�aj , bi��
aj

�2�

to completely characterize the process, z(t). The wavelet coef®cients,
E�W2

c z�aj , bi��, are obtained by using a modi®ed form of Littlewood±Paley (L±P)
basis described by

c�t� � �1=p
���������������
�sÿ 1�

p
��sin sptÿ sin pt�=t �3�

This basis has been proposed by Basu and Gupta [5], and used earlier for the
analysis of linear SDOF and MDOF systems (Basu and Gupta [6, 7]). Apart
from a reasonably fast temporal decay (thus helping to capture the local
temporal features), this basis offers the advantageous features like orthogonality
and non-overlapping of the energy bands (Basu and Gupta [5±7]). The Fourier
transform of this basis function may be expressed as

ĉ�o� � 1=
��������������������
2�sÿ 1�pp

, pEjo jEsp
0 otherwise

� �
, �4�

where s is the scalar factor used in discretizing a (see Appendix for details).

2.2. WAVELET-BASED STOCHASTIC LINEARIZATION

On wavelet transforming both sides of equation (1), and on integrating
Wc�x�a, b� by parts to give �@=@b�Wc _x�a, b� (see Basu and Gupta [5] for details),
one gets

�@=@b�Wc _x�a, b� � mgWch�a, b� � ÿWc z�a, b� �5�
where Wch�a, b� denotes the wavelet transform of sgn� _x�. For linearization of
equation (1), one considers an alternative equation with viscous damping, c, as

�x� c _x � ÿz�t�: �6�
This can be written in wavelet domain as

�@=@b�Wc _x�a, b� � cWc _x�a, b� � ÿWc z�a, b�: �7�
On squaring the error, e, between equations (5) and (7), one obtains

e2 � �mgWc h�a, b� ÿ cWc _x�a, b��2: �8�
The error in the instantaneous response energy at a time instant, t= b, is now
obtained by integrating e2 over a with a norm of 1/a2. Taking expectation of this
error and minimizing with respect to c gives
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@

@c
E

�
1

a2
�mgWc h�a, b� ÿ cWc _x�a, b��2 da

� �
� 0: �9�

On exchanging the integral operator with the expectation and differential
operators, and on discretizing the integral (see equations (A.5) and (A.6) in the
Appendix), one obtains

c � mg
X
j

1

aj
E�Wc h�aj , bi�Wc _x�aj , bi��

�X
j

1

aj
E�W2

c _x�aj , bi��: �10�

It may be mentioned here that compared to direct linearization in the time
domain, the above (wavelet-based) linearization has been preferred since the
input process is assumed to be characterized by its wavelet co-ef®cients.
Equation (10) can be simpli®ed by considering the following expressionsX

i

X
j

K

aj
E�Wij _xWij h� �

X
i

E� _x sgn _x� �
X
i

E� j _x j � �11�

and X
i

X
j

K

aj
E�W2

ij _x� �
X
i

E� _x2�: �12�

A deterministic version of equations (11) and (12) for continuous wavelet
transform may be seen in Daubechies [9]. In these expressions, Wij(�) denotes
Wc(�)(aj , bi) for the notational convenience. Since the coef®cients, Wij(�),
contribute locally at the instant, t= bi , equations (11) and (12) lead to the
following instantaneous relationships:

E� _x2� jt�bi �
X
j

K

aj
E�W2

ij _x�, E� j _x j � jt�bi �
X
j

K

aj
E�Wij _xWij h�: �13, 14�

Assuming the process j _x j to be locally Gaussian at each instant, one has

E� j _x j � �
��������
2=p

p �����������
E� _x2�p

, �15�
and thus equations (13) and (14) lead toX

j

K

aj
E�Wij _xWij h� �

���
2

p

r �����������������������������X
j

K

aj
E�W2

ij _x�
s

: �16�

On substituting this equation in equation (10), one obtains

ci � mg

���
2

p

r
1

� �����������������������������X
j

K

aj
E�W2

ij _x�
s0@ 1A �17�

as the expression of viscous damping, c, in the equivalent system at time instant,
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t= bi . This implies that it is necessary to consider time-varying damping in the
equivalent system to linearize the non-linear system. One can simplify equation
(17) further by describing the coef®cients, E�W2

ij _x�, in terms of the input
coef®cients, E�W2

ij z�. For this, one formulates the stochastic input±output
relationship in the wavelet domain. On substituting the following discretized
wavelet expansion of _x,

_x �
X
i

X
j

KDb
aj

Wij _xcaj, bi
�t�, �18�

and on taking Fourier transform of both sides of equation (6), one obtainsX
i

X
j

1

aj
Wij _xĉaj, bi

�o� �
X
i

X
j

1

aj
Wij zQ�o�ĉaj, bi

�o�, �19�

where

Q�o� � 1=�ci ÿ io� �20�
is the frequency domain transfer function for the relative velocity response of the
rigid block. Since the L±P basis function used for the analysis has the property
that the dilates of the function have their Fourier transforms supported over
mutually non-overlapping intervals, the response in one particular band is
unaffected by the input in the other band. This property of the wavelet basis
function further simplifes equation (19) toX

i

1

aj
Wij _xĉaj, bi

�o� �
X
i

1

aj
Wij zQ�o�ĉaj, bi

�o�: �21�

On taking square of the amplitude on both sides of equation (21), integrating
over o, and on neglecting the cross-terms associated with the coef®cient,
E�Wij zWkj f �, i 6� k (see Basu and Gupta [6, 7]), one obtainsX

i

E�W2
ij _x� �

X
i

E�W2
ij z�
�1
ÿ1
jQ�o� j2j ĉaj, bi

�o� j2 do: �22�

Now, on using the time localization property of the wavelets, i.e., the property
of the wavelet coef®cients, Wij _x, to temporally contribute to the response at the
time instant, t= bi , and its close neighbourhood only, one can write the
following instantaneous input±output relationship

E�W2
ij _x� � E�W2

ij z�
�1
ÿ1
jQ�o� j2 j ĉaj, bi

�o� j2 do: �23�

In view of this, equation (17) may be written as

ci � mg
���
2
p � ������������������������������������������������������������������������������������������������������������X

j

K

�sÿ 1�ci tan
ÿ1��sÿ 1�pci aj=�c2i a2j � sp2��E�W2

ij z�
s

: �24�

This transcendental algebraic equation is to be solved iteratively to obtain the
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instantaneous value of ci . This calculation can however be simpli®ed further by
using the following approximation,

tanÿ1�sÿ 1�pci aj=�c2i a2j � sp2�1�sÿ 1�pci aj=�c2i a2j � sp2� �25�
to give

c2i

X
j

K
paj

c2i a
2
j � sp2

E�W2
ij z� � 2m2g2: �26�

The approximation in equation (25) holds good, since the maximum value of the
kernel (i.e., �sÿ 1�=2 ���

s
p

as obtained for ci aj � p
���
s
p

) on the left side of equation
(25) is much less than unity. Further, the term, aj=�c2i a2j � sp2�, in equation (26)
varies with a very mild slope for variation in the expected range of values of
ci aj . Thus, it can be treated as a constant independent of j. If the left side of
equation (26) receives maximum contribution from E��W 2

ij z�� for j=m, this
constant may be assumed to be equal to am=�c2i a2m � sp2�. Then, equation (26)
gives the instantaneous damping of the equivalent system as

ci � mg
��������
2ps
p � �������������������������������������������������������������

K
X
j

E�W2
ij z�am ÿ 2a2m m2g2=p

s
�27�

directly in terms of the wavelet coef®cients of the input process. This may now
be used to characterize the response quantity of interest pertaining to the given
non-linear system. For example, on substituting equation (27) into equation (17),
we get the expression of instantaneous mean-square velocity response as

s2i � E� _x2�jt�bi �
�KPj E�W2

ij z�am ÿ 2a2m m2g2=p�
p2s

: �28�

3. SPECTRAL MOMENTS

The statistics of a non-stationary response process may be estimated by
obtaining the moments of the instantaneous PSDF of the process. To obtain the
expression for the instantaneous PSDF of velocity response, one considers that
the different energy bands in equation (23) are overlapping and that s is close to
unity. Thus, it is possible to write (see Basu and Gupta [6, 7])

S _x jt�bi �
X
j

K

aj
� j ĉ�aj o� j2=�o2 � c2i ��E�W2

ij z�, �29�

as the expression for instantaneous PSDF. On taking the sth order moment, this
equation gives

ms jt�bi �
X
j

K 0E�W2
ij z�
�sp=aj
p=aj

os

o2 � c2i
do, �30�

with K 0 � K=�sÿ 1�p. On evaluating the integral in equation (30), the zeroth
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and the ®rst instantaneous moments are obtained as

m0 jt�bi �
X
j

K 0E�W2
ij z�I0, j�ci , aj� �31�

and

m1 jt�bi �
X
j

K 0E�W2
ij z�I1, j�ci , aj� �32�

respectively, with

I0, j � �1=ci� tanÿ1��sÿ 1�paj ci=�a2j c2i � sp2�� �33�
and

I1, j � 1
2 ln��s2p2 � c2i a

2
j �=�p2 � c2i a

2
j ��: �34�

Further, the higher moments of the instantaneous PSDF can be obtained by
using the following recursive relationship,

ms jt�bi �
X
j

K 0E�W2
ij z�

1

s

p
aj

� �sÿ1
�ssÿ1 ÿ 1� ÿ c2i Isÿ2, j

( )
: �35�

The moments of the instantaneous response PSDF can be used to obtain several
response statistics of interest. For example, the instantaneous rate of crossings,
Oi , and bandwidth parameter, li , are respectively obtained as

Oi � �1=2p�
�������������������������������
m2 jt�bi=m0 jt�bi

q
, li �

������������������������������������������������������
1ÿm2

1 jt�bi=m0 jt�bi m2 jt�bi
q

: �36, 37�

Further, the largest peak statistics in the process, _x�t�, with duration, T, can be
calculated based on the probability that the process, j _x�t� j, remains below the
level, _x, during the time interval, (0, T). This probability is given as (Vanmarcke
[19])

PT� _x� � exp ÿ
�T
0

a�t� dt
� �

� exp ÿ
X
i

ai Db

" #
, �38�

where

ai � 2Oif�1ÿ exp�ÿ
��������
p=2

p
lie _x=si��=�1ÿ exp�ÿ _x2=2s2i ��geÿ _x2=2s2i �39�

is the rate parameter with lie � l1�bi and b=0�2.

4. VALIDATION OF PROPOSED FORMULATION

The proposed formulation has been validated by generating an ensemble of
twenty accelerograms by using the SYNACC program (Wong and Trifunac
[20]), as in Basu and Gupta [6, 7], for the recorded ground motion at Pacoima
dam site during the 1971 San Fernando earthquake. These time histories are
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then used to obtain the wavelet coef®cients (see equation (A.1)) with i=1±2047,

j=ÿ17±4, s=21/4, and Db=0�02. On averaging over the ensemble, these

coef®cients squared, i.e., E�W2
c z�aj , bi��, characterize the stochastic input

process.

Figure 1 shows the expected maximum relative velocity response as calculated

from the (proposed) wavelet formulation as well as the time-history simulations

for m varying from 0�05±0�15. These results compare quite well, and as expected,

it is observed that with the increase in the value of m, the maximum velocity

decreases. This indicates that with an increasing m, the duration of the sticking

phase increases with more transmission of vibration to the superstructure.

Similar observations are made in Figure 2 for the r.m.s. velocity response. To

have a more detailed comparison, the instantaneous r.m.s. velocity response for

a typical value of m=0�1 has been calculated from the wavelet formulation and

Figure 1. Comparison of the expected maximum velocity estimates from simulation and wave-
let-based approach for different m values. Key: Ð, simulation; � � � �, wavelet.

Figure 2. Comparison of the r.m.s. velocity estimates from simulation and wavelet-based
approach for different m values. Key: Ð, simulation; � � � �, wavelet.
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the time-history analyses. The values plotted in Figure 3 show a very good
agreement, particularly with respect to the sticking and slipping phases.

5. EFFECTIVENESS OF FRICTION BASE-ISOLATION SYSTEM

In this section, the proposed formulation is used to study the effectiveness of
the friction base-isolation system. This is done in terms of the mean-square
absolute acceleration of the block versus the mean-square ground acceleration.
It may be observed from equation (27) that the damping, ci , of the equivalent

system theoretically becomes in®nite when the wavelet coef®cients, E�W2
ij z�, of

the input acceleration satisfy the condition that

K
X
j

E�W2
ij z�e2am m2g2=p: �40�

This implies that the system is in its sticking phase at the instant, t= bi . Thus,
for the total duration, T, of the excitation, the percentage sticking time, Zstk , can
be obtained as

Zstk �
100

T

X
i

U ÿK
X
j

E�W2
ij z� �

2am m2g2

p

 !
Db �41�

where U(�) denotes the unit-step function. A value of Zstk close to 100% implies
®xed-base behaviour of the structural system. When the system sticks to the
foundation, the relative motion of the block with respect to the ground is absent.
In that case, the absolute acceleration of the block is equal to the ground
acceleration. When the base acceleration exceeds the value, mg, the system starts
slipping and the modulus of the absolute acceleration becomes equal to mg.
Now, on using the information on the relative durations of the sticking and

Figure 3. Comparison of the instantaneous r.m.s. velocity estimates from simulation and wave-
let-based approach for m=0�1. Key: Ð, simulation; � � � �, wavelet.
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slipping phases, it is possible to calculate the temporally integrated mean-square

value, A2, of the absolute acceleration of the block over the entire duration of

the excitation. This can be expressed as

A2 �
X
i

E���x� z�2� jt�bi Db

�
X
i

X
j

K

aj
E�W2

ij z�Zi�m� � �1ÿ Zi�m��m2g2
( )

Db �42�

with

Zi�m� � U ÿK
X
j

E�W2
ij z� � 2am m2g2=p

 !
: �43�

By taking a ratio of this with the temporally integrated value of the mean-square

ground acceleration, one gets a measure of the effectiveness of the base-isolation.

By calling the square-root of this ratio as the acceleration transmission ratio, r, it

may be expressed as

r �
������������������������������������������������������������������������������������������������������������������������������������X
i

X
j

K

aj
E�W2

ij z�Zi�m� � �1ÿ Zi�m��m2g2
( ),X

i

X
j

K

aj
E�W2

ij z�
vuut : �44�

A lower value of this ratio implies greater effectiveness of the base-isolation

system.

The instantaneous absolute acceleration responses as calculated from the

proposed formulation are plotted in Figures 4 and 5 respectively for m=0�1 and

0�2. The results of time-history simulations using the ensemble as in section 4 are

Figure 4. Comparison of the instantaneous r.m.s. acceleration estimates from simulation and
wavelet-based approach for m=0�1. Key: Ð, simulation; � � � �, wavelet.
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also shown in these ®gures. Both ®gures show a very good agreement in the two
sets of results. The acceleration transmission ratio, r, as computed from the
proposed formulation is also in good agreement with the simulation results as
shown in Figure 6. It is also seen in this ®gure that the transmission of vibration
may be reduced by 60% to 20% for m ranging from 0�05±0�15.
In the friction base-isolation systems, the slip displacement is also an

important quantity as this has to be restricted within a reasonable level from a
functional point of view. It is however not possible to have the stochastic
estimates of the slip displacements by using the present formulation as this is
based on a zero mean, locally Gaussian response assumption. A typical
realization of the time history of slip displacement as obtained for a sample of
the generated ensemble (see section 5) is shown in Figure 7. This clearly indicates
that the response is non-zero mean and non-Gaussian. Thus, the proposed

Figure 5. Comparison of the instantaneous r.m.s. acceleration estimates from simulation and
wavelet-based approach for m=0�2. Key: Ð, simulation; � � � �, wavelet.

Figure 6. Comparison of the acceleration transmission ratio, r, from simulation and wavelet-
based approach for different m values. Key: Ð, simulation; � � � �, wavelet.
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formulation needs to be extended to the non-zero mean and non-Gaussian
response processes for the wavelet-based stochastic estimation of the slip
displacement. It may be mentioned that the time-history simulations using the
same ensemble show in Figure 8 that the average maximum slip displacements
may be of the order of a few centimeters only, for the friction coef®cients above
0�15.

6. EFFECT OF FREQUENCY NON-STATIONARITY

As mentioned in the introductory remarks, conventional modelling of the
input (non-stationary) process as an amplitude-modulated process may not be
acceptable for estimating the response of non-linear systems. To demonstrate
this in the present case, one considers the ground acceleration process as
characterized in section 4 through the wavelet coef®cient functions, E�W2

ij z�, and
alternatively model this as an amplitude-modulated process such that the new
(modi®ed) process has the same temporal non-stationary characteristics as the

Figure 7. A typical slip displacement time history for m=0�1.

Figure 8. Variation of expected maximum slip displacement with m.
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old (unmodifed) process in terms of instantaneous mean-square values. For the
amplitude-modulated modelling, the coef®cient functions, E�W2

ij z�, are modi®ed
in two stages. In the ®rst stage, those are modi®ed to E�W02ij z� for different values
of j in such a way that

E�W 02
ij z� �

Db
T

X
m

E� ~W2
mj z� 8i: �45�

This condition ensures that the modi®ed process has the same shape of the
energy spectrum at all time instants and that this shape is same as that of the
average energy spectrum of the unmodi®ed process. Further, the co-ef®cients,
E�W 02

ij z� are modi®ed by multiplying a constant factor to E� ~W2
ij z�, for all j

values, such that X
j

K

aj
E�W 02

ij z� �
X
j

K

aj
E� ~W2

ij z�: �46�

Through this condition, the (instantaneous) energy spectrum of the modi®ed

Figure 9. Comparison of 5% damping pseudo spectral velocity spectra for modi®ed and unmo-
di®ed processes. Key: Ð, modi®ed; � � � �, unmodi®ed.

Figure 10. Comparison of expected maximum velocity for modi®ed and unmodi®ed processes
in case of different m values. Key: Ð, modi®ed; � � � �, unmodi®ed.
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process is scaled up/down such that the instantaneous mean square values of
both modi®ed and original processes are identical.
The modi®ed and original processes which are characterized by the wavelet

coef®cient functionals, E� ~W2
ij z� and E�W2

ij z� respectively, are identical as regards
the response of a linear system. To show this, the expected pseudo-spectral
velocity response has been estimated for the two processes in case of a set of
linear SDOF oscillators with 5% damping and natural periods varying between
0�04 s to 8�5 s. The stochastic formulation of Basu and Gupta [7] has been used
for this purpose. The results for the two processes have been compared in Figure
9. It is seen that the responses for both the processes are very close, and thus the
original and modi®ed processes are almost identical. The two processes may
however lead to widely different responses in case of the proposed formulation

Figure 11. Comparison of Zstk for modi®ed and unmodi®ed processes in case of different m
values. Key: Ð, modi®ed; � � � �, unmodi®ed.

Figure 12. Comparison of instantaneous mean-square velocity for modi®ed and unmodi®ed
processes in case of m=0�1. Key: Ð, modi®ed; � � � �, unmodi®ed.
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for a non-linear system. Figure 10 shows this clearly in case of the expected
(maximum) velocity response for a range of m values. This effect of disparity in
frequency non-stationarity is also supported by Figure 11 where the percentage
sticking time, Zstk , is compared for the two processes. It may be seen that the
modi®ed process corresponds to the ®xed-base response for m> 0�18. On the
other hand, the unmodi®ed process corresponds to slipping for about 12±15% of
the total excitation duration at these values of m. A comparison of the
instantaneous mean square velocity responses calculated for both the processes
as shown in Figure 12 for m=0�1 also shows that the two `identical' processes
may lead to substantially different non-linear responses.

7. CONCLUSIONS

A wavelet-based stochastic linearization technique has been developed for
obtaining the stochastic seismic response of a rigid block resting on a rough
surface. This linearization technique involves the replacement of the non-linear
system by a linear system with time-varying damping. The proposed formulation
takes into account the effects of both amplitude and frequency non-stationarity,
and accurately predicts the response statistics as seen in case of the considered
example. It has also been shown how the proposed formulation can be used to
test the effectiveness of a given friction base-isolation system for a ground
motion process characterized through wavelet coef®cients. Through another
numerical study, it has been shown that the conventional use of frequency-
independent modulating function to characterize the ground motion process may
be inappropriate, particularly in case of the higher friction coef®cients. This
happens due to the sticking±slipping behaviour getting substantially altered in
case of different frequency non-stationarity.
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APPENDIX

A zero-mean, non-stationary process, f (t), with locally Gaussian
characteristics is considered. The wavelet transform, Wc f �a, b�, of f �t� with
respect to a wavelet basis, c(t), and its inversion relationship are given
respectively as follows (see, e.g., Daubechies [9])

Wc f �a, b� �
�1
ÿ1

f �t�ca, b�t� dt, a > 0 �A:1�

and

f �t� � 1

2pCc

�1
ÿ1

�1
ÿ1

1

a2
Wc f �a, b�ca, b�t� da db �A:2�
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with

Cc �
�1
ÿ1

j ĉ�o� j2
jo j do <1: �A:3�

In equations (A.1) and (A.2), ca, b�t� �� j a jÿ1=2c��tÿ b�=a�� is the translated and
dilated form of the wavelet function, c(t), and in equation (A.3), ĉ�o� is the
Fourier transform of the basic wavelet function, c(t), given by

ĉ�o� � 1������
2p
p

�1
ÿ1

c�t�eÿiot dt: �A:4�

In the convolution integral of equation (A.1), the parameter, b, has the
physical signi®cance of localizing the basis function at t= b and its
neighbourhood. The parameter, a, captures the contribution of f �t� to the
frequency band corresponding to the domain of the Fourier transform of ca, b�t�
(i.e., ĉ�ao�eiob�. For numerical evaluation of the above integrals, a scheme
similar to that by Alkemede [21] may be followed, and a and b may be
discretized respectively at aj � sj and bj � � jÿ 1�Db, where s and Db are the
discretization parameters. The step changes at a= aj and b= bj respectively are
now de®ned as

Dbj � ��bj�1 ÿ bj� � �bj ÿ bjÿ1��=2 � Db �A:5�
and

Daj � ��aj�1 ÿ aj� � �aj ÿ ajÿ1��=2 � �aj=2��sÿ 1=s�: �A:6�
The discretized version of equation (A.2) is therefore obtained as

f �t� �
X
i

X
j

�KDb=aj�Wc f �aj , bi�caj;bi�t� �A:7�

with

K � �1=4pCc��sÿ 1=s�: �A:8�
Also, the instantaneous mean-square value of the process, f (t), is obtained as

E� f 2�t�� jt�bi � K
X
j

E�W2
c f �aj , bi��=aj : �A:9�
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